classes de 5ᵉ

Physique Chimie
Table des matières

Table des matières ... 3

Chapitre 1 – La réaction chimique ... 5
 1 Combustion du magnésium .. 5
 2 Décomposition de l’eau ... 6
 3 Échanges d’énergie lors des réactions chimiques ... 7

Chapitre 2 – À la découverte du modèle atomique .. 8
 1 Loi de la conservation de la masse ... 8
 2 Hypothèses atomiques de Dalton ... 9
 3 Interprétation de la loi de la conservation de la masse .. 10

Chapitre 3 - Les éléments chimiques .. 12
 1 Les symboles chimiques ... 12
 2 Le tableau périodique des éléments ... 14

Chapitre 4 – Subdivision des corps .. 15
 1 Les différents corps purs .. 15
 2 Formules chimiques .. 16

Chapitre 5 – Classification des éléments chimiques .. 20
 1 Exemples de corps simples de différents éléments chimiques ... 20
 2 Métaux et non-métaux ... 21
 3 Conductibilité électrique et thermique .. 22
 4 Récapitulatif .. 23
 5 Réactions des métaux avec l’acide chlorhydrique ... 23
 6 Les métalloïdes ... 24
 7 Les gaz nobles .. 24

Chapitre 6 - Oxygène et combustions .. 26
 1 L’élément oxygène - Carte d’identité ... 26
 2 Propriétés physiques de O₂ ... 27
 3 Propriétés chimiques de O₂ ... 27
 4 Préparation de O₂ ... 27
 5 Les réactions d’oxydation ... 28
 6 Types de réactions d’oxydation .. 29
 7 Les réactions de combustion ... 29
 8 Exemples de combustions .. 30
 9 Exercices de récapitulation .. 34

Annexe 1 : Tableaux avec les valeurs de masses volumiques de différents matériaux 35
Chapitre 1 – La réaction chimique

1 Combustion du magnésium

Expérience : Un ruban de magnésium (longueur maximale 3 cm) est brûlé dans la flamme d’un brûleur Bunsen.

Observations :

- De la chaleur est libérée,
- une lumière blanche très vive est émise,
- un solide blanc, cassant se forme : l’oxyde de magnésium.

Conclusion : Lors de cette combustion, une réaction chimique se déroule.

Les caractéristiques d’une réaction chimique sont :

- au moins un nouveau corps se forme.
- il y a un échange d’énergie avec le milieu extérieur. Ici cet échange se fait par émission de lumière et libération de chaleur.

Une telle réaction chimique est souvent notée sous forme simplifiée :

Cela se traduit par : si le magnésium réagit avec le dioxygène, il se forme de l’oxyde de magnésium.

La flèche « → » indique qu’une réaction chimique a lieu !
2 Décomposition de l’eau

Observations :

Identification des gaz :

- À l’électrode négative (−), appelée cathode, le gaz brûle avec un bruit sifflant : c’est le dihydrogène.
- À l’électrode positive (+), appelée anode, le gaz enflamme un tison en incandescence : c’est le dioxygène.

L’eau a été décomposée en dihydrogène et en dioxygène par électrolyse.

Notation simplifiée :

eau → dihydrogène + dioxygène

Photos du montage expérimental :
3 Échanges d’énergie lors des réactions chimiques

Les échanges d’énergie entre le lieu de la réaction et le milieu qui l’entoure peuvent être de deux sortes.

- Analysons l’expérience de l’électrolyse de l’eau du point de vue énergétique : Lors de l’électrolyse de l’eau, on doit fournir du courant électrique pour que la réaction se déroule. Dès que l’on arrête de fournir du courant électrique, l’électrolyse s’arrête.

Or le courant électrique est une forme d’énergie. Fournir du courant électrique à une réaction chimique revient donc à fournir de l’énergie à cette réaction.

Beaucoup d’autres réactions chimiques nécessitent également un apport d’énergie pour pouvoir se dérouler. Cette énergie est le plus souvent fournie sous forme de chaleur.

- D’un autre côté, il existe des réactions chimiques qui libèrent de l’énergie. C’est par exemple le cas pour les réactions de combustions : si on brûle par exemple de l’essence, de la chaleur est libérée :

Exercice C1 : *
Résume les réactions suivantes à l’aide de la notation simplifiée. Indique si la réaction est exothermique ou endothermique.

a. Le cuivre et le soufre réagissent pour former du sulfure de cuivre. Lors de cette réaction, on observe une incandescence.
b. Le dichlore réagit avec le sodium pour former du chlorure de sodium (= sel de cuisine). Le récipient devient chaud et de la lumière orange est émise.
c. L’eau est décomposée en dihydrogène et en dioxygène par électrolyse.
d. L’oxyde de sodium est formé en brûlant le sodium dans le dioxygène avec libération de chaleur et de lumière.
e. Lorsqu’on chauffe de l’oxyde d’argent, il se forme du dioxygène et de l’argent métallique.
f. La combustion du carbone en présence de dioxygène fournit du dioxyde de carbone.
g. Sous l’action du courant électrique, l’aluminium et le dioxygène se forment à partir de la bauxite.
h. Sous l’action de la chaleur, l’oxyde de mercure se décompose en mercure et en dioxygène.
i. Le dihydrogène réagit avec le difluor pour former le fluorure d’hydrogène en libérant de la chaleur.

Exercice C2 : *

Lorsque le corps pur ammoniac est chauffé à des températures supérieures à 630°C, il y a formation de deux gaz incolores :

- le gaz 1 éteint une flamme, c’est le diazote.
- le gaz 2 est inflammable, il brûle avec un bruit sifflant.

a. Quelle est le deuxième gaz ?
b. Résume la réaction à l’aide de la notation simplifiée.
c. Que peux-tu conclure sur la composition chimique du gaz ammoniac ?
d. La réaction chimique est-elle exo- ou endothermique ? Motive ta réponse !
Chapitre 2 – À la découverte du modèle atomique

C’est à la fin du 18e siècle que la chimie moderne a fait de grands progrès avec la découverte des lois fondamentales de la chimie. Les scientifiques de l’époque commençaient à se débarrasser des méthodes des alchimistes, qui pratiquaient l’alchimie au Moyen-Âge.

Ce sont les lois fondamentales de la chimie qui ont amené les scientifiques à considérer que la matière est formée de particules indivisibles : les atomes. Ces lois fondamentales sont :

▪ Loi de la conservation de la masse
▪ Loi des proportions constantes
▪ Loi des proportions multiples.

Parmi ces lois fondamentales, uniquement la loi de la conservation de la masse sera traitée ici.

1 Loi de la conservation de la masse

Expérience 1 : Pesons un tube à essais contenant du fer et du soufre dans le rapport de 7 g de fer pour 4 g de soufre.

La balance indique la masse avant la réaction : m = ____________

Le contenu du tube à essais est ensuite chauffé dans la flamme d’un brûleur BUNSEN.

Observation :

Après la réaction, le produit de la réaction est pesé : m = ______________

Expérience 2 : Sur une balance, on pèse quelques millilitres d’acide chlorhydrique dans un erlenmeyer, un morceau de craie et un ballon.

Masse avant la réaction : m = ____________

Ensuite, on introduit le morceau de craie dans l’acide chlorhydrique.

Observation :

Masse après la réaction : m = ______________

Conclusion : On constate que la masse de l’ensemble n’a pas changé lors de la réaction, elle a été conservée.
C’est en 1789 qu’Antoine Lavoisier énonce la loi qui porte aujourd’hui son nom : la « loi de Lavoisier ». De nos temps, Antoine Lavoisier est considéré comme étant le « père de la chimie moderne », car il a énormément fait avancer la chimie :
- il a énoncé la loi de la conservation de la masse,
- il a identifié et « baptisé » l’élément oxygène,
- il a réussi à expliquer le phénomène de la combustion,
- il a participé à la réforme de la nomenclature chimique (= la méthode d’attribution d’un nom aux corps chimiques),
- en publiant ses résultats dans des revues, il mettait le fruit de ses recherches à la disposition d’autres scientifiques,
- ...

A côté de son travail de scientifique, Lavoisier était également fermier général (all. : Steuereintreiber) à l’époque de Louis XV. Soupçonné de s’être enrichi, Lavoisier a été stigmatisé comme traître par les révolutionnaires et guillotiné lors de la Terreur à Paris le 8 mai 1794, en même temps que l’ensemble des autres fermiers généraux. Le mathématicien Lagrange commentait sa mort : « Il n’a fallu qu’un instant pour lui couper la tête ; mais la France ne sera pas capable de produire une autre pareille en un siècle ».

2 Hypothèses atomiques de Dalton

En classe de 6e, on vous a présenté la matière comme étant subdivisée en particules, modèle très simple qui postule que la matière est constituée de sphères compactes minuscules indivisibles.

Or, ce modèle est bien insuffisant pour pouvoir interpréter la formation de nouveaux corps lors d’une réaction chimique. C’est ainsi que le scientifique anglais John DALTON a proposé en 1808 un modèle plus élaboré qui permet d’interpréter ou d’expliquer les lois fondamentales à l’aide d’un modèle.

Dalton formulait les hypothèses suivantes :

- La matière est constituée de particules fondamentales indivisibles par voie chimique et physique : les …

 Des atomes égaux entre eux représentent un même … Ils se distinguent des atomes d’un autre élément par …

- Les atomes ne peuvent être ni détruits, ni produits par des réactions chimiques.

- Les atomes des différents éléments peuvent se lier entre eux dans un rapport déterminé.

Différents atomes selon le modèle de Dalton :

Remarque : Dans les modèles atomiques, les atomes sont représentés à l’aide du code-couleur suivant :
- blanc : hydrogène
- noir : carbone
- bleu : azote
- rouge : oxygène
- jaune : soufre
- vert : chlore
3 Interprétation de la loi de la conservation de la masse

Le modèle décrit par ces hypothèses permet d’interpréter les lois fondamentales.

Reprenons la réaction entre le fer et le soufre rencontrée au paragraphe 1 page 8 :

\[\text{fer} + \text{soufre} \rightarrow \text{sulfure de fer} \]

Selon les hypothèses de Dalton, des atomes de fer et de soufre se lient entre eux au cours de cette réaction. Supposons qu’un atome de fer se lie à un atome de soufre (cas le plus simple, qui correspond en plus ici à la situation réelle).

On peut alors représenter cette réaction au niveau atomique :

Au cours de la réaction, les atomes de soufre se lient aux atomes de fer.

En général, les atomes des réactifs sont réarrangés au cours d’une réaction chimique, c’est-à-dire ils se cherchent de nouveaux partenaires.

Mais comme le nombre total d’atomes ne change pas au cours de la réaction, la masse des produits est égale à celle des réactifs.
Exercice C3 : *
Parmi les affirmations suivantes, coche celles qui sont correctes pour la réaction entre le fer et le soufre.

- Une réaction chimique se déroule.
- Les réactifs sont transformés.
- On observe une incandescence.
- Un nouveau produit se forme.
- La masse totale ne varie pas.
- La masse du produit est plus élevée que celle des réactifs.

Exercice C4 : **
Pour les situations décrites ci-dessous, indique les réactions à l’aide de la notation simplifiée, puis réponds aux questions posées !

a. 7 g de fer réagissent avec 4 g de soufre pour former du sulfure de fer. Détermine la masse de sulfure de fer formée.

b. Le magnésium réagit avec le dioxygène pour former de l’oxyde de magnésium. À partir de 3 g de magnésium, on obtient 5 g d’oxyde de magnésium. Détermine la masse de dioxygène qui a réagi !

c. Lorsqu’on chauffe l’oxyde d'argent, il se décompose en argent et en dioxygène. En chauffant 7 g d’oxyde d’argent, on obtient 6,5 g d’argent. Détermine la masse de dioxygène libéré !

d. Lorsque ton vélo rouille, le fer réagit avec le dioxygène de l’air. Qu’est-ce qui se passe avec la masse de ton vélo au cours de ce phénomène ?

e. Tu mets une bouteille en plastique remplie d’eau et fermée hermétiquement dans le congélateur. Que se passera-t-il avec la masse de la bouteille lorsque l’eau sera gelée ?

f. Tu poses un verre d’eau sur une balance. Tu mets un comprimé effervescent dans l’eau. Que se passera-t-il avec la masse ?

Exercice C5 : **
Pourquoi faut-il toujours fermer les récipients avec un ballon (lors des expériences) ?

Exercice C6 : **
Un morceau de laine de fer est pesé, puis enflammé à l’aide d’un brûleur Bunsen. Une incandescence se propage à travers toute la laine de fer et un solide gris-bleuâtre se forme : l’oxyde de fer (voir photos ci-dessous).

L’oxyde de fer formé lors de la réaction est ensuite pesé : sa masse est supérieure à celle de la laine de fer initiale. Comment peut-on expliquer ceci ?
Chapitre 3 - Les éléments chimiques

1 Les symboles chimiques

Au moyen-âge, les alchimistes ont inventé une symbolique particulière pour désigner les corps chimiques. Ils utilisaient cette symbolique à la fois pour désigner les éléments chimiques, mais aussi pour les corps formés de plusieurs éléments chimiques.

Mais comme le nombre d’éléments qui furent découverts augmentait de façon considérable à partir de la fin du 18e siècle, cette symbolique est rapidement devenue beaucoup trop compliquée pour être utilisée pour désigner la multitude de corps chimiques.

C’est pourquoi le chimiste suédois Jöns Jacob Berzelius proposa une nouvelle symbolique en 1813. Cette symbolique est encore utilisée de nos jours et est régulièrement complétée avec les symboles des éléments nouvellement découverts.

Actuellement, 118 éléments chimiques différents sont connus, et ils sont regroupés dans le tableau périodique des éléments (T.P.E.).

<table>
<thead>
<tr>
<th>Symbolique des alchimistes</th>
<th>Elément</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>argent</td>
<td>⊙</td>
<td>⊙</td>
</tr>
<tr>
<td>or</td>
<td>⊙</td>
<td>⊙</td>
</tr>
<tr>
<td>mercure</td>
<td>⊙</td>
<td>⊙</td>
</tr>
<tr>
<td>cuivre</td>
<td>⊙</td>
<td>⊙</td>
</tr>
<tr>
<td>fer</td>
<td>⊙</td>
<td>⊙</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbolique moderne</th>
<th>Elément</th>
<th>Symbole</th>
</tr>
</thead>
<tbody>
<tr>
<td>carbone</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>oxygène</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>cuivre</td>
<td>Cu</td>
<td>Cu</td>
</tr>
<tr>
<td>sodium</td>
<td>Na</td>
<td>Na</td>
</tr>
<tr>
<td>hydrogène</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

Chaque élément est symbolisé par un symbole dont la 1e lettre (majuscule) provient du nom latin ou grec de l’élément et à laquelle est ajoutée éventuellement une 2e lettre (minuscule) figurant dans le nom.
En voici une liste des noms et symboles des éléments chimiques les plus courants :

<table>
<thead>
<tr>
<th>Nom français</th>
<th>Symbole</th>
<th>Nom allemand</th>
</tr>
</thead>
<tbody>
<tr>
<td>aluminium</td>
<td>Al</td>
<td>Aluminium</td>
</tr>
<tr>
<td>argent</td>
<td>Ag</td>
<td>Silber</td>
</tr>
<tr>
<td>argon</td>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>azote</td>
<td>N</td>
<td>Stickstoff</td>
</tr>
<tr>
<td>baryum</td>
<td>Ba</td>
<td>Barium</td>
</tr>
<tr>
<td>béryllium</td>
<td>Be</td>
<td>Beryllium</td>
</tr>
<tr>
<td>bore</td>
<td>B</td>
<td>Bor</td>
</tr>
<tr>
<td>brome</td>
<td>Br</td>
<td>Brom</td>
</tr>
<tr>
<td>calcium</td>
<td>Ca</td>
<td>Calcium</td>
</tr>
<tr>
<td>carbone</td>
<td>C</td>
<td>Kohlenstoff</td>
</tr>
<tr>
<td>chlore</td>
<td>Cl</td>
<td>Chlor</td>
</tr>
<tr>
<td>chrome</td>
<td>Cr</td>
<td>Chrom</td>
</tr>
<tr>
<td>cobalt</td>
<td>Co</td>
<td>Cobalt</td>
</tr>
<tr>
<td>cuivre</td>
<td>Cu</td>
<td>Kupfer</td>
</tr>
<tr>
<td>étain</td>
<td>Sn</td>
<td>Zinn</td>
</tr>
<tr>
<td>fer</td>
<td>Fe</td>
<td>Eisen</td>
</tr>
<tr>
<td>fluor</td>
<td>F</td>
<td>Fluor</td>
</tr>
<tr>
<td>hélium</td>
<td>He</td>
<td>Helium</td>
</tr>
<tr>
<td>hydrogène</td>
<td>H</td>
<td>Wasserstoff</td>
</tr>
<tr>
<td>iode</td>
<td>I</td>
<td>Iod</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nom français</th>
<th>Symbole</th>
<th>Nom allemand</th>
</tr>
</thead>
<tbody>
<tr>
<td>krypton</td>
<td>Kr</td>
<td>Krypton</td>
</tr>
<tr>
<td>lithium</td>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>manganèse</td>
<td>Mn</td>
<td>Mangan</td>
</tr>
<tr>
<td>magnésium</td>
<td>Mg</td>
<td>Magnesium</td>
</tr>
<tr>
<td>mercure</td>
<td>Hg</td>
<td>Quecksilber</td>
</tr>
<tr>
<td>nickel</td>
<td>Ni</td>
<td>Nickel</td>
</tr>
<tr>
<td>néon</td>
<td>Ne</td>
<td>Neon</td>
</tr>
<tr>
<td>or</td>
<td>Au</td>
<td>Gold</td>
</tr>
<tr>
<td>oxygène</td>
<td>O</td>
<td>Sauerstoff</td>
</tr>
<tr>
<td>phosphore</td>
<td>P</td>
<td>Phosphor</td>
</tr>
<tr>
<td>platine</td>
<td>Pt</td>
<td>Platin</td>
</tr>
<tr>
<td>plomb</td>
<td>Pb</td>
<td>Blei</td>
</tr>
<tr>
<td>potassium</td>
<td>K</td>
<td>Kalium</td>
</tr>
<tr>
<td>silicium</td>
<td>Si</td>
<td>Silicium</td>
</tr>
<tr>
<td>sodium</td>
<td>Na</td>
<td>Natrium</td>
</tr>
<tr>
<td>soufre</td>
<td>S</td>
<td>Schwefel</td>
</tr>
<tr>
<td>titane</td>
<td>Ti</td>
<td>Titan</td>
</tr>
<tr>
<td>uran</td>
<td>U</td>
<td>Uran</td>
</tr>
<tr>
<td>xénon</td>
<td>Xe</td>
<td>Xenon</td>
</tr>
<tr>
<td>zinc</td>
<td>Zn</td>
<td>Zink</td>
</tr>
</tbody>
</table>

Exercice C7 :

Dans le cadre suivant se cachent les noms de 25 éléments. Retrouve ces éléments (à l’horizontale ou à la verticale), et note pour chaque élément le nom et le symbole !
Le tableau périodique des éléments

Les 118 éléments actuellement connus sont classés dans le tableau périodique des éléments, proposé par le chimiste russe Dimitri Mendeleïev en 1869.

Les éléments sont classés selon 2 critères :
- selon leur masse atomique croissante,
- des éléments ayant des propriétés similaires sont classés en colonnes (groupes).

C'est d'ailleurs la raison pour laquelle ce tableau est appelé tableau périodique : les propriétés des éléments se répètent périodiquement si l'on passe d'un élément à l'autre.
Chapitre 4 – Subdivision des corps

Selon le modèle atomique de Dalton, les atomes des différents éléments peuvent s’associer entre eux dans un rapport déterminé. **De telles associations d’atomes sont appelées « molécules »**.

1 Les différents corps purs

Reprenez l’exemple de l’électrolyse de l’eau (voir p. 6) ; l’eau s’y est décomposé en dioxygène et en dihydrogène :

Une molécule d’eau est composée d’atomes des éléments hydrogène (H) et oxygène (O). On dit donc que l’eau est un **corps composé**.

Le dioxygène par contre figure parmi les corps les plus simples qui existent, ses molécules n’étant formées que d’atomes d’un seul élément chimique, l’oxygène (O). Puisqu’il en est de même pour le dihydrogène, ces deux corps sont des **corps simples**.

Les atomes qui forment une molécule peuvent donc appartenir soit au même élément chimique, soit à différents éléments. Dans tous les cas, le nombre d’atomes des différents éléments dans une molécule d’un corps donné est bien défini.
Exemples de corps simples :

- diazote (représenté par 4 molécules)
- argon (représenté par 5 atomes)

Exemples de corps composés :

- méthane (constituant principal du gaz naturel - représenté par 6 molécules)
- dioxyde de carbone (représenté par 5 molécules)

Attention : il ne faut confondre les **corps composés** et les **mélanges** : Un corps composé est un corps pur, donc un corps où toutes les particules qui forment ce corps sont identiques entre elles. Un mélange par contre est constitué de particules de différents types.

Exemples de mélanges :

2 Formules chimiques

On sait que les molécules sont formées par association d’au moins 2 atomes. Pour indiquer la composition d’une molécule, on combine les symboles pour indiquer une **formule chimique**.

Dans une formule chimique,

- chaque élément est représenté par son symbole,
- le nombre d’atomes est indiqué par un indice (l’indice 1 n’est pas écrit).
En voici quelques exemples de molécules avec leurs formules chimiques correspondantes :

<table>
<thead>
<tr>
<th>molécule formée de 2 atomes d’oxygène.</th>
<th>molécule formée d’un atome de carbone et de 2 atomes d’oxygène</th>
<th>molécule formée d’un atome de carbone et d’un atome d’oxygène</th>
<th>molécule formée d’un atome d’hydrogène et d’un atome de chlore</th>
<th>molécule formée d’un atome de carbone et de 4 atomes d’hydrogène</th>
</tr>
</thead>
<tbody>
<tr>
<td>dioxygène O_2</td>
<td>dioxyde de carbone CO_2</td>
<td>monoxyde de carbone CO</td>
<td>eau H_2O</td>
<td>chlorure d’hydrogène HCl</td>
</tr>
<tr>
<td>molécule formée de 2 atomes d’oxygène.</td>
<td>molécule formée d’un atome de carbone et de 2 atomes d’oxygène</td>
<td>molécule formée d’un atome de carbone et d’un atome d’oxygène</td>
<td>molécule formée d’un atome d’hydrogène et d’un atome de chlore</td>
<td>molécule formée d’un atome de carbone et de 4 atomes d’hydrogène</td>
</tr>
</tbody>
</table>

Exercice C8 : *

Complets l’organigramme suivant sur la subdivision de la matière en utilisant les termes français, puis ajoute les termes allemands correspondants (voir 7e / 6e) :

Exercice C9 : *

Indique si les corps suivants sont des corps simples ou composés :

<table>
<thead>
<tr>
<th>Corps</th>
<th>simple ou composé ?</th>
<th>Corps</th>
<th>simple ou composé ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxyde de fer</td>
<td></td>
<td>bromure de potassium</td>
<td></td>
</tr>
<tr>
<td>dioxygène</td>
<td></td>
<td>sulfate de magnésium</td>
<td></td>
</tr>
<tr>
<td>dioxyde de carbone</td>
<td></td>
<td>soufre</td>
<td></td>
</tr>
<tr>
<td>chlorure de sodium</td>
<td></td>
<td>eau</td>
<td></td>
</tr>
<tr>
<td>(« sel de cuisine »)</td>
<td></td>
<td>(voir l’électrolyse de l’eau)</td>
<td></td>
</tr>
<tr>
<td>chrome</td>
<td></td>
<td>ammoniac (voir exercice C2)</td>
<td></td>
</tr>
</tbody>
</table>

Exercice C10 : *

Le modèle moléculaire permet de bien comprendre la différence entre un corps composé et un mélange. Explique cette différence à l’aide du modèle moléculaire !
Exercice C11 : *
Indique pour les schémas suivants s’il s’agit d’un mélange ou d’un corps pur ! Préciser ensuite la nature du corps pur respectivement la composition du mélange.

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercice C12 : *
En utilisant les types de molécules ci-contre, schématiser le modèle moléculaire

a. d’un corps simple,
b. d’un mélange quelconque,
c. d’un mélange d’un corps simple avec un corps composé,
d. d’un corps composé,
e. d’un mélange de deux corps composés.

Exercice C13 : *
Indique la formule chimique des molécules suivantes !
Aide: Identifie d’abord les éléments constitutifs, et détermine ensuite le nombre d’atomes de chaque élément !

<table>
<thead>
<tr>
<th>a.</th>
<th>b.</th>
<th>c.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercice C14 : *
Pour chaque molécule, indique le nom de l’élément et le nombre d’atomes de chaque élément.

a. HF c. CH₄ e. PCl₅ g. C₆H₁₂O₆
b. SO₂ d. Br₂ f. C₂H₇N
c. H₂O d. CO₂ e. N₂

d. H₂S e. CO f. CH₄ g. C₂H₆

Exercice C15 : *
Indique la formule chimique des molécules suivantes !

a. Une molécule de trioxyde de soufre renferme 1 atome de soufre et 3 atomes d’oxygène.
b. Une molécule d’éthène renferme 2 atomes de carbone et 4 atomes d’hydrogène.
c. Une molécule d’acide sulfurique renferme 2 atomes d’hydrogène, 1 atome de soufre et 4 atomes d’oxygène.
d. Une molécule de propane (gaz utilisé au camping) renferme 3 atomes de carbone et 8 atomes d’hydrogène.
**Exercice de révision C16 : **

Compléter le tableau suivant comme montré dans les deux premiers exemples.

<table>
<thead>
<tr>
<th>Formule chimique</th>
<th>Nombre total d'atomes</th>
<th>Quelle est la signification ?</th>
<th>Corps simple ou composé ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Au</td>
<td>7 (\times) 1 = 7</td>
<td>7 atomes d’or</td>
<td></td>
</tr>
<tr>
<td>2 HCl (chlorure d’hydrogène)</td>
<td>2 (\times) (1+1) = 4</td>
<td>2 molécules de chlorure d’hydrogène, chacune formée d’1 atome d’hydrogène et d’1 atome de chlore</td>
<td></td>
</tr>
<tr>
<td>1 NH₃ (ammoniac)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I₂ (diiode)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 H₃PO₄ (acide phosphorique)</td>
<td></td>
<td>4 molécules d’acide phosphorique, chacune formée de 3 atomes d’hydrogène, de 1 atome de phosphore et de 3 atomes d’oxygène</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 atomes de silicium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 molécule de difluor, formée de 2 atomes de fluor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 molécules d’acide nitrique, chacune formée d’un atome d’hydrogène, d’un atome d’azote et de 3 atomes d’oxygène</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 molécule de nitroglycérine, formée de 3 atomes de carbone, de 5 atomes d’hydrogène, de 3 atomes d’azote et de 9 atomes d’oxygène</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapitre 5 – Classification des éléments chimiques

Le but de ce chapitre est de montrer que les propriétés de beaucoup de corps simples se ressemblent, et que l’on peut dès lors classer les éléments chimiques dans différentes catégories.

1 Exemples de corps simples de différents éléments chimiques

argent aluminium or Brome (dibrome) carbone

cuivre chlore (dichlore) chrome fer mercure

iode (diiode) magnésium phosphore soufre étain

zinc titane
2 Métaux et non-métaux

Dans le tableau ci-dessous, indique les propriétés des corps simples repris en photo à la page précédente. Note toutes les observations que tu peux faire, p. ex. l’état d’agrégation, la couleur, la brillance, etc.

<table>
<thead>
<tr>
<th>Corps simple</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>argent</td>
<td></td>
</tr>
<tr>
<td>aluminium</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>brome (dibrome)</td>
<td></td>
</tr>
<tr>
<td>carbone</td>
<td></td>
</tr>
<tr>
<td>cuivre</td>
<td></td>
</tr>
<tr>
<td>chlore (dichlore)</td>
<td></td>
</tr>
<tr>
<td>chrome</td>
<td></td>
</tr>
<tr>
<td>fer</td>
<td></td>
</tr>
<tr>
<td>iode (diiode)</td>
<td></td>
</tr>
<tr>
<td>magnésium</td>
<td></td>
</tr>
<tr>
<td>mercure</td>
<td></td>
</tr>
<tr>
<td>phosphore</td>
<td></td>
</tr>
<tr>
<td>soufre</td>
<td></td>
</tr>
<tr>
<td>étain</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
</tr>
<tr>
<td>titane</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Est-ce que certaines propriétés de ces corps simples se ressemblent ?

Cherche la position des éléments formant les corps simples qui **présentent un éclat** (qui brillent) dans le tableau périodique (T.P.E.) ! Dans quelle partie se trouvent-ils ?

Cherche la position des éléments formant les corps simples qui **ne sont pas gris** et qui **ne présentent pas d’éclat** dans le tableau périodique ! Dans quelle partie se trouvent-ils ?

On peut classer les éléments chimiques en deux grandes catégories :

3 Conductibilité électrique et thermique

Expérience 1 : Une baguette en verre et une baguette en cuivre de même longueur sont tenues avec leur extrémité dans la flamme d’un brûleur. Dès que la main ressent qu’une des baguettes devient chaude, celle-ci est posée sur la table. **Attention aux brûlures !**

La baguette qui est devenue chaude en premier lieu est celle en _____________

Pour la baguette en _____________, on ne ressent pas d’augmentation de la température.

Expérience 2 : Des échantillons de différents corps sont placés dans un circuit électrique.

Les corps simples suivants conduisent le courant électrique :

Les corps (1) suivants ne conduisent pas le courant électrique :

(1) Le verre, le bois et le plastique sont des corps composés constitués principalement de non-métaux.
4 Récapitulatif

Pour chacune des catégories d’éléments, complète les cases correspondantes avec les propriétés observées généralement :

<table>
<thead>
<tr>
<th></th>
<th>Etat</th>
<th>Brillance</th>
<th>Couleur</th>
<th>Bon conducteur thermique</th>
<th>Bon conducteur électrique</th>
<th>Situation dans le T.P.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Métal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-métal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comme pour beaucoup de règles, il existe des exceptions. Note dans le tableau les exceptions que tu as pu observer. En ce qui concerne...

... la couleur des métaux

... l’état d’agrégation des métaux

... la conduction de l’électricité

... la situation dans le T.P.E.

5 Réactions des métaux avec l’acide chlorhydrique

Expérience 3 : Dans un tube à essais, on trempe les métaux suivants dans une solution diluée d’acide chlorhydrique (all. : Salzsüure). Le gaz qui sort du tube à essais contenant le magnésium est recueilli dans un tube à essais et est enflammé à l’aide d’un brûleur BUNSEN.

<table>
<thead>
<tr>
<th>Métal</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>magnésium</td>
<td></td>
</tr>
<tr>
<td>zinc</td>
<td></td>
</tr>
<tr>
<td>fer</td>
<td></td>
</tr>
<tr>
<td>cuivre</td>
<td></td>
</tr>
<tr>
<td>aluminium</td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>argent</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion :

Certains métalloïdes sont attaqués par l'acide chlorhydrique. Il se forme un gaz qui brûle au contact d'une flamme avec un bruit sifflant : c'est le dihydrogène.

D'autres métaux comme le cuivre, l'argent ou l'or ne sont pas attaqués par l'acide chlorhydrique.

Les métaux sont généralement attaqués par l'acide chlorhydrique, le gaz dihydrogène H₂ est libéré.

Les métaux qui ne réagissent pas avec l'acide chlorhydrique sont appelés métaux nobles : platine (Pt), argent (Ag), mercure (Hg), or (Au) et cuivre (Cu).

Les métalloïdes ont des propriétés intermédiaires entre les métaux et les non-métaux. Parmi les métalloïdes, on trouve par exemple le bore (B), le silicium (Si) et le germanium (Ge).

À cause de leur conductibilité électrique très particulière, les métalloïdes jouent un rôle important dans la fabrication de semi-conducteurs (nécessaires pour le fonctionnement des ordinateurs, des téléphones portables ou des cellules solaires).

Dans le tableau périodique, les métalloïdes se situent entre les métaux et les non-métaux.

Les gaz nobles, encore appelées gaz rares, gaz inertes ou argonides, sont chimiquement inertes. Cela veut dire qu'ils ne réagissent guère avec d'autres éléments pour former des composés.

Ils servent surtout à la fabrication de tubes luminescents (par exemple les « tubes à néon » ou les phares au xénon des voitures).

Parmi les gaz nobles, on trouve par exemple l'hélium (He), le néon (Ne), l'argon (Ar) ou le radon (Rn).

Les gaz nobles sont chimiquement inertes et forment la dernière colonne du tableau périodique des éléments (T.P.E.).
**Exercice C17: **
La photo à côté montre des échantillons de cuivre, de fer, d’or et d’aluminium. Décris comment tu peux identifier les différents métaux !

**Exercice C18 : *
Classe les éléments suivants en catégories en mettant une croix dans la case appropriée.
Remarques : - plusieurs appartenances sont possibles pour certains éléments !
- un métal compte parmi les métaux lourds à partir d’une masse volumique > 5 g/cm3.

<table>
<thead>
<tr>
<th>Élément</th>
<th>Symbole chimique</th>
<th>Métal léger</th>
<th>Métal lourd</th>
<th>Métalloïde</th>
<th>Non-métal</th>
<th>Gaz noble</th>
</tr>
</thead>
<tbody>
<tr>
<td>titane</td>
<td>Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fer</td>
<td>Fe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chrome</td>
<td>Cr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oxygène</td>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silicium</td>
<td>Si</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>néon</td>
<td>Ne</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>azote</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hélium</td>
<td>He</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>étain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>antimoine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>potassium</td>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>platine</td>
<td>Pt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cuivre</td>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>iode</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>carbone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bore</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapitre 6 - Oxygène et combustions

1 L’élément oxygène - Carte d’identité

Symbole

O

Etat naturel

L’oxygène est
- le troisième élément en importance de l’Univers (après l’hydrogène et l’hélium) et
- l’élément le plus abondant à la surface de la Terre.
L’écorce terrestre est formée pour 50% en masse de l’élément oxygène (voir graphique).

Dans quels composés trouve-t-on l’élément oxygène ?

En tant que corps simple, l’élément oxygène existe sous deux formes:
- le dioxygène O₂ renfermé dans l’atmosphère à raison de 21 % en volume
 La plus grande partie du O₂ atmosphérique résulte de la photosynthèse (2).
- l’ozone (trioxygène) O₃ de la couche d’ozone (à 50 – 100 km d’altitude)

En tant que corps composé, l’élément oxygène se trouve surtout dans l’écorce terrestre. L’élément O se combine ainsi
- au silicium dans le dioxyde de silicium (quartz) qui forme le sable,
- aux métaux dans les oxydes métalliques qui forment les minéraux,
- au calcium et au carbone dans les roches calcaires,
- à l’hydrogène dans l’eau des océans,

Découverte

Le dioxygène a été découvert indépendamment en 1773 par Karl Wilhelm Scheele et en 1774 par Joseph Priestley.

Utilisations

Le dioxygène
- permet la respiration des êtres vivants,
- est utilisé dans la fabrication de l’acier,
- sous forme liquide constitue une partie du « carburant » des fusées.

Comme le dioxygène O₂ est la forme la plus courante sous laquelle on trouve l’élément oxygène dans la nature, la suite du chapitre traitera les propriétés de ce gaz.

(2) La photosynthèse est le processus selon lequel les plantes vertes assimilent le dioxyde de carbone et l’eau et en font des glucides et du dioxygène sous l’influence de la lumière visible.
2 Propriétés physiques de O_2

Aux conditions normales de température et de pression (1013 hPa et 0°C), le O_2 est un gaz incolore, inodore et insipide, très peu soluble dans l'eau.

3 Propriétés chimiques de O_2

Comme le dioxygène est un gaz incolore, inodore et insipide, il faut procéder à une méthode indirecte pour le mettre en évidence.

Expérience : Un tison incandescent est d’abord introduit dans le cylindre en verre rempli de dioxygène.

Observation :

Le tison enflammé est ensuite introduit dans un autre cylindre en verre rempli de dioxyde de carbone.

Observation :

4 Préparation de O_2

En général, le dioxygène est préparé au laboratoire d’une autre manière qu’en industrie.

En effet, la préparation au laboratoire nécessite une méthode simple et rapide pour produire de petites quantités de O_2. Cependant, pour la préparation industrielle, il est important que la méthode choisie produise du O_2 en très grandes quantités et à un prix bon marché.

a. Préparation au laboratoire

Une méthode pour produire rapidement de petites quantités de dioxygène est l’électrolyse de l’eau (voir p. 6).

On peut aussi décomposer des substances peu stables riches en oxygène, comme le chlorate de potassium $KClO_3$. Comme cette décomposition se fait à chaud, on parle d’une thermolyse du chlorate de potassium.
b. Préparation industrielle

Le graphique ci-contre indique la composition de l’air sec : elle renferme 21 % en volume de dioxygène.

Propose une méthode de purification du O\textsubscript{2} qui se base sur les différentes températures d’ébullition des constituants de l’air :

5 Les réactions d’oxydation

Le dioxygène joue un rôle important dans les réactions de combustion, car c’est en principe un des réactifs (3).

Expérience : Un morceau de laine de fer est chauffé jusqu’à l’incandescence à l’air libre dans la flamme du brûleur Bunsen.
On répète l’expérience, mais cette fois, la laine de fer incandescente est plongée dans une éprouvette remplie de dioxygène pur.

Observations :

Lors de cette réaction, le fer fixe de l’oxygène.

Exercice C19 : **

Décrire la combustion du fer en indiquant la notation simplifiée et l’équation chimique de la réaction, en admettant qu’il se forme de l’oxyde de fer FeO au cours de la réaction.

(3) Il existe aussi des réactions de combinaisons où l’élément oxygène n’intervient pas, comme p. ex. une combustion dans le dichlore Cl\textsubscript{2}.
6 Types de réactions d’oxydation

On distingue selon la vitesse de la réaction divers types de réactions d’oxydation :

- **les oxydations lentes** se font à température peu élevée, avec une faible vitesse.
 Exemples : formation de la rouille

 Expérience : de la laine d’acier est introduite dans une éprouvette cylindrique, puis l’éprouvette est retournée sur une cuve renfermant de l’eau. Au cours d’une semaine, la laine d’acier rouille et l’eau monte dans l’éprouvette.

- **les oxydations vives**, encore appelées *combustions*, se font rapidement et avec un dégagement de chaleur assez important, souvent accompagné d’une flamme.
 Exemples : combustion du charbon, du bois, de l’essence, ...

7 Les réactions de combustion

Le gaz dioxygène joue un rôle déterminant lors des phénomènes de combustion. Pour éteindre un feu, il suffit de le couvrir avec une couverture étanche à l’air.

La combustion de la laine de fer (p.27) a montré que **les réactions de combustion qui se déroulent dans le dioxygène pur sont généralement plus vives que celles dans l’air.**

Au cours de cette réaction, le fer est le combustible et le dioxygène, qui entretient la combustion, est le comburant.

Pour effectuer une combustion, il faut réunir un combustible avec un comburant (le dioxygène) et leur apporter l’énergie calorifique nécessaire au démarrage de la réaction chimique (étincelle p.ex.).

Une combustion s’accompagne d’un dégagement de chaleur et généralement d’une flamme.
8 Exemples de combustions

a. Combustion du magnésium (Mg)

Expérience : Reprenons la réaction du début du chapitre 1 (p. 5), où un ruban de magnésium (3 cm max.) est brûlé dans la flamme d’un brûleur Bunsen.

Le produit de la réaction est l’oxyde de magnésium MgO, un solide blanc.

b. Combustion du carbone (C)

Expérience : Un petit morceau de charbon (formé essentiellement de carbone) dans une cuillère à combustion est enflammé à l’aide du brûleur Bunsen. Lorsqu’il est incandescent, l’ensemble est introduit dans un cylindre rempli de O2. Après la réaction, on ajoute de l’eau de chaux dans le cylindre.

Observations :
Dans le dioxygène pur, l’incandescence du carbone est plus vive que dans l’air.

Conclusion :

(voir la remarque Test d’identification de gaz à la page suivante).

Indiquer la notation simplifiée et l’équation chimique de la réaction :

En introduisant de l’eau de chaux (all. : Kalkwasser) dans le cylindre, celle-ci se trouble. L’eau de chaux est un réactif caractéristique qui permet de mettre en évidence le dioxyde de carbone. Le cylindre contient donc du dioxyde de carbone (CO₂).

Remarque : Test d’identification de gaz

Pour identifier certains gaz courants au laboratoire, on a recours à des tests de reconnaissance caractéristiques. Pour démontrer la présence de dioxyde de carbone, on utilise de l’eau de chaux. L’eau de chaux est un liquide incolore qui se trouble en présence de dioxyde de carbone.
c. Combustion du dihydrogène (H₂)

Expérience : Dans un premier tube à essais, on introduit un ruban de magnésium (longueur ~ 4 cm). On ajoute de l’acide chlorhydrique dilué et on récupère le gaz formé avec un deuxième tube à essais tenu au-dessus de la flamme. Le gaz recueilli est brûlé dans la flamme du brûleur.

Observations :

1. On entend un sifflement aigu.
2. De petites gouttelettes se sont formées dans le deuxième tube à essais.

Conclusion :

Lors de cette réaction, le dihydrogène H₂ est oxydé par le dioxygène O₂ de l’air en eau H₂O.

Indiquer la notation simplifiée et l’équation chimique de la réaction :

\[2 \text{H}_2 + \text{O}_2 \rightarrow 2 \text{H}_2\text{O} \]

Lorsque l’hydrogène est oxydé, il se forme de l’eau (H₂O).

d. Combustion du méthane (CH₄)

Le méthane est le constituant principal du gaz naturel, qui est utilisé dans les chaudières à gaz pour chauffer les maisons. Le méthane CH₄ est formé des éléments carbone (C) et hydrogène (H).

Etudions la réaction de combustion qui se déroule dans ces chaudières.

Expérience : Un brûleur Bunsen est allumé (virole ouverte) et les gaz formés sont recueillis dans une éprouvette disposée au-dessus de la flamme et de l’eau de chaux est ajoutée dans cette éprouvette.

Finalement, un bécher froid est tenu au-dessus de la flamme du brûleur.
Observations :

Lors de cette réaction, les éléments C et H qui forment le méthane sont oxydés : le carbone est oxydé en dioxyde de carbone CO_2 et l’hydrogène est oxydé en eau H_2O.

Indiquer la notation simplifiée et l’équation chimique de la réaction :

$\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2 \text{H}_2\text{O}$
Exercices de récapitulation

**Exercice C21 : * **

a. Indiquer l’état du dioxygène aux températures suivantes : à −190 °C et à −250 °C.

b. Vrai ou faux ? Cocher les affirmations exactes :
 - ☐ Le dioxygène est un gaz combustible.
 - ☐ Le dioxygène est un gaz comburant.
 - ☐ En chauffant le dioxygène avec un brûleur Bunsen, il commence à brûler.
 - ☐ On peut éteindre un feu en empêchant le dioxygène d’atteindre le feu.
 - ☐ Le diazote et le dioxygène sont les constituants principaux de l’air.
 - ☐ En laissant réchauffer l’air liquide, le dioxygène s’échappe avant le diazote parce que sa température d’ébullition est inférieure à celle du diazote.

Exercice C22 : *

Indiquer les notations simplifiées et les équations des réactions suivantes. Indiquer à chaque fois le nom du produit obtenu, sachant que le nom des composés qui renferment l’élément oxygène commencent par « oxyde de … ».

a. Lors de la combustion du lithium, il y a formation de Li2O.

b. Lors de l’oxydation de l’aluminium, du Al2O3 se forme.

c. Le CaO se forme lorsque le calcium est brûlé.

d. La combustion du phosphore fournit du P2O5.

**Exercice C23 : ** Formation de la rouille

Lorsqu’il fer rouille, il se forme de l’oxyde de fer Fe2O3.

a. De quel type de réaction s’agit-il ?

b. Indiquer la notation simplifiée de la réaction.

c. Établir l’équation chimique.

d. Quelle est la différence principale de la combustion du fer et de l’oxydation du fer en rouille ?

**Exercice C24 : * Combustion du dihydrogène (H2) **

Une pile à combustible (*all. : Brennstoffzelle*) sert à la fabrication d’électricité grâce à l’oxydation du dihydrogène en eau. Cette technologie pourrait à terme remplacer les moteurs thermiques de nos voitures.

a. Indiquer la notation simplifiée de la réaction, sachant que cette oxydation se fait en présence du dioxygène de l’air.

b. Dresser l’équation de cette réaction d’oxydation.

c. Proposer une méthode permettant de produire le dihydrogène nécessaire à cette transformation. Donner le nom du procédé et indiquer l’équation chimique.

**Exercice C25 : * Tests d’identification (de mise en évidence) de gaz **

a. Expliquer comment le dioxygène peut être mis en évidence.

b. Expliquer comment le dioxyde de carbone peut être mis en évidence.

c. Expliquer comment le dihydrogène peut être mis en évidence.
Annexe 1 : Tableaux avec les valeurs de masses volumiques de différents matériaux

<table>
<thead>
<tr>
<th>Solides : (à 20 °C)</th>
<th>Différents types de bois</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom français</td>
<td>nom allemand</td>
</tr>
<tr>
<td>polystyrène</td>
<td>Styropor</td>
</tr>
<tr>
<td>liège</td>
<td>Kork</td>
</tr>
<tr>
<td>bois</td>
<td>Holz</td>
</tr>
<tr>
<td>lithium</td>
<td>Lithium</td>
</tr>
<tr>
<td>charbon de bois</td>
<td>Holzkohle</td>
</tr>
<tr>
<td>potassium</td>
<td>Kalium</td>
</tr>
<tr>
<td>glace (0°C)</td>
<td>Eis</td>
</tr>
<tr>
<td>cire (bougie)</td>
<td>Wachs (Kerze)</td>
</tr>
<tr>
<td>sodium</td>
<td>Natrium</td>
</tr>
<tr>
<td>caoutchouc</td>
<td>Kautschuk</td>
</tr>
<tr>
<td>ambre</td>
<td>Bernstein</td>
</tr>
<tr>
<td>plexiglas</td>
<td>Plexiglas</td>
</tr>
<tr>
<td>plastique (PVC)</td>
<td>Kunststoff</td>
</tr>
<tr>
<td>sable</td>
<td>Sand</td>
</tr>
<tr>
<td>béton</td>
<td>Beton</td>
</tr>
<tr>
<td>calcium</td>
<td>Calcium</td>
</tr>
<tr>
<td>magnésium</td>
<td>Magnesium</td>
</tr>
<tr>
<td>carbone</td>
<td>Kohlenstoff</td>
</tr>
<tr>
<td>graphite</td>
<td>Graphit</td>
</tr>
<tr>
<td>diamant</td>
<td>Diamant</td>
</tr>
<tr>
<td>verre</td>
<td>Glas</td>
</tr>
<tr>
<td>aluminium</td>
<td>Aluminium</td>
</tr>
<tr>
<td>granite</td>
<td>Granit</td>
</tr>
<tr>
<td>marbre</td>
<td>Marmor</td>
</tr>
<tr>
<td>titane</td>
<td>Titan</td>
</tr>
<tr>
<td>zinc</td>
<td>Zink</td>
</tr>
<tr>
<td>chrome</td>
<td>Chrom</td>
</tr>
<tr>
<td>étain</td>
<td>Zinn</td>
</tr>
<tr>
<td>fer</td>
<td>Eisen</td>
</tr>
<tr>
<td>acier</td>
<td>Stahl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Liquides : (à 20°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom français</td>
</tr>
<tr>
<td>sable</td>
</tr>
<tr>
<td>béton</td>
</tr>
<tr>
<td>calcium</td>
</tr>
<tr>
<td>magnésium</td>
</tr>
<tr>
<td>carbone</td>
</tr>
<tr>
<td>graphite</td>
</tr>
<tr>
<td>diamant</td>
</tr>
<tr>
<td>verre</td>
</tr>
<tr>
<td>aluminium</td>
</tr>
<tr>
<td>granite</td>
</tr>
<tr>
<td>marbre</td>
</tr>
<tr>
<td>titane</td>
</tr>
<tr>
<td>zinc</td>
</tr>
<tr>
<td>chrome</td>
</tr>
<tr>
<td>étain</td>
</tr>
<tr>
<td>fer</td>
</tr>
<tr>
<td>acier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gaz : (à 0°C et 1013 hPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>nom français</td>
</tr>
<tr>
<td>laiton</td>
</tr>
<tr>
<td>nickel</td>
</tr>
<tr>
<td>cuivre</td>
</tr>
<tr>
<td>argent</td>
</tr>
<tr>
<td>plomb</td>
</tr>
<tr>
<td>or</td>
</tr>
<tr>
<td>tungstène</td>
</tr>
<tr>
<td>platine</td>
</tr>
<tr>
<td>dihydrogène</td>
</tr>
<tr>
<td>hélium</td>
</tr>
<tr>
<td>méthane</td>
</tr>
<tr>
<td>diazote</td>
</tr>
<tr>
<td>air</td>
</tr>
<tr>
<td>dioxyde de carbone</td>
</tr>
<tr>
<td>Tableau Periodique Des Elements</td>
</tr>
<tr>
<td>--------------------------------</td>
</tr>
<tr>
<td>I (1)</td>
</tr>
<tr>
<td>II (2)</td>
</tr>
<tr>
<td>III (13)</td>
</tr>
<tr>
<td>IV (14)</td>
</tr>
<tr>
<td>V (15)</td>
</tr>
<tr>
<td>VI (16)</td>
</tr>
<tr>
<td>VII (17)</td>
</tr>
<tr>
<td>VIII (18)</td>
</tr>
</tbody>
</table>

Solide - Fest

Gaz - Gasförmig

Liquide - Flüssig

Nicht-metal - Nichtmetall

Metal - Metall